M61323SP/FP

Wide Frequency Band Analog Switch

Description

The M61323SP/FP is a semiconductor integrated circuit for the RGBHV interface. The device features switching signals input from two types of image sources and outputting the signals to the CRT display, etc. Synchronous signals, meeting a frequency band of 10 kHz to 200 kHz , are output at TTL. The frequency band of video signals is 250 MHz , acquiring high-resolution images, and are optimum as an interface IC with high-resolution CRT display and various new media.

The M61323SP/FP keeps the power saving mode, and it can reduce I_{CC} about 10 mA under the condition that all V_{CC} are supplied.

Features

- Frequency band : RGB

H, V

- Input level:

RGB
H, V TTL input

250 MHz
10 kHz to 200 kHz
$0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (Typ.)
3 to $5 \mathrm{~V}_{\mathrm{O}-\mathrm{P}}$ (bipolar)

- Only the G channel is provided with Sync-on video output. The TTL format is adopted for HV output.

Application

Display monitor

Recommended Operating Condition

Supply voltage range:
4.75 to 5.25 V
Rated voltage range:

Block Diagram

M61323SP
(

M61323FP

(

Pin Arrangement

Outline: PRDP0032BA-A (32P4B)

Outline: PRSP0036GA-B (36P2R-D)

Absolute Maximum Ratings

Item		Symbol	Ratings
Supply voltage	V_{CC}	7.0	Unit
Power dissipation	Pd	$1603(\mathrm{SP}), 1068(\mathrm{FP})$	mW
Operating temperature	Topr	-20 to $+85(\mathrm{SP}),-20$ to $+75(\mathrm{FP})$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-40 to +150	${ }^{\circ} \mathrm{C}$
Electrostatic discharge	Surge	± 200	V
Recommended supply voltage	Vopr	5.0	V
Recommended supply voltage range	Vopr'	4.75 to 5.25	V

Electrical Characteristics

$\left(\mathrm{M} 61323 \mathrm{SP} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Limits			Unit	Test Point (s)	Input											SW	
		Min.	Typ.	Max.			$\begin{aligned} & \hline \text { SW2 } \\ & \text { Rin1 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SW4 } \\ \text { Gin1 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { SW6 } \\ \text { Bin1 } \\ \hline \end{array}$	$\begin{aligned} & \text { SW7 } \\ & \text { Hin1 } \end{aligned}$	$\begin{array}{\|l} \hline \text { SW8 } \\ \text { Vin1 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { SW10 } \\ \text { Rin2 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { SW12 } \\ \text { Gin2 } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { SW14 } \\ \text { Bin2 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { SW15 } \\ \text { Hin2 } \end{array}$	$\begin{array}{\|c\|} \hline \text { SW16 } \\ \text { Vin2 } \\ \hline \end{array}$	$\begin{array}{\|l} \text { SW22 } \\ \text { Sync } \\ \hline \end{array}$	SW11 P.sav	$\begin{array}{\|l\|} \hline \text { SW13 } \\ \text { Switch } \\ \hline \end{array}$
Circuit current1	I_{CC}	-	70	-	mA	-	b	b	b	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	b
Circuit current2	I_{CC} STBY	-	-	10	mA	-	b	b	b	b	b	b	b	b	b	b	b	b	b
RGB SW																			
Output DC voltage1	Vdc1	-	1.5	-	V	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	b	b	b	b	b	b	b	b	b	b	b	$\begin{aligned} & \hline a \\ & 3 \mathrm{~V} \end{aligned}$	b
Output DC voltage2	Vdc2	-	1.5	-	V	$\begin{aligned} & 31 \\ & 28 \\ & 25 \\ & \hline \end{aligned}$	b	b	b	b			b	b	b	b	b	$\begin{aligned} & \mathrm{a} \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$
Output DC voltage3	Vdc3	-	0.9	-	V	23	b	b	b	b	b	b	b	b	b	b	b	$\begin{gathered} \hline a \\ 3 \mathrm{~V} \end{gathered}$	b
Output DC voltage4	Vdc4	-	0.9	-	V	23	b	b	b	b	b	b	b	b	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline a \\ & 3 \mathrm{~V} \\ & \hline \end{aligned}$
Maximum allowable input level1	Vimax1	-	1.8	-		$\begin{array}{\|l\|} \hline 31 \\ 28 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & \text { abb } \\ & \text { SG1 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG1 } \end{aligned}$	$\begin{aligned} & \mathrm{bba} \\ & \mathrm{SG} 1 \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{aligned} & \hline a \\ & 3 \mathrm{~V} \end{aligned}$	b
Maximum allowable input level2	Vimax2	-	1.8	-	VP-P	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	b		b	b	b	$\begin{aligned} & \text { abb } \\ & \text { SG1 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG1 } \end{aligned}$	bba SG1	b	b	b	$\begin{aligned} & \hline a \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline a \\ & 3 \mathrm{~V} \end{aligned}$
Voltage gain1	$\mathrm{G}_{\mathrm{V} 1}$		0.7	1.3	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{abb} \\ & \text { SG2 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG2 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG2 } \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	b
Relative voltage gain1	$\Delta \mathrm{G}_{\mathrm{V} 1}$	-0.4	0	0.4	dB	-	Relative to measured values above												
Voltage gain2	$\mathrm{G}_{\mathrm{V} 2}$	-0.1	0.7	1.3	dB	31 28 25	b	b	b	b	b	$\begin{aligned} & \hline \text { abb } \\ & \text { SG2 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG2 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG2 } \end{aligned}$	b	b	b	$\begin{gathered} \hline a \\ 3 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{a} \\ & 3 \mathrm{~V} \end{aligned}$
Relative voltage gain2	$\Delta \mathrm{G}_{\mathrm{V} 2}$	-0.4	0	0.4	dB	-	Relative to measured values above												
Voltage gain3	$\mathrm{G}_{\mathrm{V} 3}$	-0.6	0	0.6	dB	23	b	$\begin{gathered} \hline a \\ \mathrm{SG} 2 \\ \hline \end{gathered}$	b	b	b	b	b	b	b	b	b	$\begin{gathered} \hline \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	b
Voltage gain4	$\mathrm{G}_{\mathrm{V} 4}$	-0.6	0	0.6	dB	23	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ \mathrm{SG2} \end{gathered}$	b	b	b	b	$\begin{gathered} \hline a \\ 3 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \hline a \\ 3 \mathrm{~V} \\ \hline \end{gathered}$

Electrical Characteristics (cont.)

Item	Symbol	Limits			Unit	Test Point (s)	Input											SW	
		Min.	Typ.	Max.			SW2 Rin1	$\begin{array}{\|l\|l\|} \hline \text { SW4 } \\ \text { Gin1 } \end{array}$	SW6 Bin1	SW7 Hin1	SW8 Vin1	$\begin{gathered} \hline \text { SW10 } \\ \text { Rin2 } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { SW12 } \\ \text { Gin2 } \end{array}$	$\begin{array}{\|c\|} \hline \text { SW14 } \\ \text { Bin2 } \end{array}$	$\begin{gathered} \hline \text { SW15 } \\ \text { Hin2 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { SW16 } \\ \text { Vin2 } \end{array}$	$\begin{array}{\|l\|} \hline \text { SW22 } \\ \text { Sync } \\ \hline \end{array}$	SW11 P.sav	SW13 Switch
Freq. characteristic1 (100 MHz)	$\mathrm{F}_{\mathrm{C} 1}$	-1	0	1	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{abb} \\ \mathrm{SG} 4 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG4 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG4 } \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	b
Relative Freq.characteristic1 (100 MHz)	$\Delta \mathrm{F}_{\mathrm{C} 1}$	-1	0	1	dB	-	Relative to measured values above												
Freq.characteristic2 $(100 \mathrm{MHz})$	$\mathrm{F}_{\mathrm{C} 2}$	-1	0	1	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	b	b	b	b	b	$\begin{aligned} & \text { abb } \\ & \text { SG4 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG4 } \end{aligned}$	bba SG4	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$
Relative Freq.characteristic2 (100 MHz)	$\Delta \mathrm{F}_{\mathrm{C} 2}$	-1	0	1	dB	-	Relative to measured values above												
Freq.characteristic3 $(250 \mathrm{MHz})$	$\mathrm{F}_{\mathrm{C} 3}$	-3	-	-	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline \text { abb } \\ & \text { SG5 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG5 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG5 } \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	b
Freq.characteristic4 $\text { (} 250 \mathrm{MHz} \text {) }$	$\mathrm{F}_{\mathrm{C} 4}$	-3	-	-	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	b	b	b	b	b	$\begin{aligned} & \hline \text { abb } \\ & \text { SG5 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG5 } \end{aligned}$	bba SG5	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$
Crosstalk between two inputs1 (10 MHz)	C.T.I. 1	-	-60	-45	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { abb } \\ \text { SG3 } \end{array}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG3 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG3 } \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$
Crosstalk between two inputs2 $(10 \mathrm{MHz})$	C.T.I. 2	-	-60	-45	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	b	b	b	b	b	$\begin{aligned} & \hline \mathrm{abb} \\ & \mathrm{SG} 3 \end{aligned}$	$\begin{aligned} & \text { bab } \\ & \text { SG3 } \end{aligned}$	bba SG3	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	b
Crosstalk between two inputs3 $(100 \mathrm{MHz})$	C.T.I. 3	-	-40	-30	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { abb } \\ \text { SG4 } \end{array}$	$\begin{aligned} & \text { bab } \\ & \text { SG4 } \end{aligned}$	$\begin{aligned} & \text { bba } \\ & \text { SG4 } \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{aligned} & \hline a \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$
Crosstalk between two inputs $4(100 \mathrm{MHz})$	C.T.I. 4	-	-40	-30	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \\ & \hline \end{aligned}$	b	b	b	b	b	$\begin{aligned} & \hline \mathrm{abb} \\ & \mathrm{SG} 4 \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG4 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG4 } \end{aligned}$	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	b
Crosstalk between channels1 (10 MHz)	C.T.C1	-	-50	-40	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	$\begin{array}{l\|} \hline \text { abb } \\ \text { SG3 } \end{array}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG3 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { bba } \\ \text { SG3 } \end{array}$	b		b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	b
Crosstalk between channels2 (10 MHz)	C.T.C2	-	-50	-40	dB	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	b		b	b	b	$\begin{aligned} & \text { abb } \\ & \text { SG3 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG3 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG3 } \end{aligned}$	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$
Crosstalk between channels3 (100 MHz)	C.T.C3	-	-30	-25	dB	31 28 25	$\begin{array}{l\|} \hline \mathrm{abb} \\ \mathrm{SG} 4 \end{array}$	$\begin{aligned} & \text { bab } \\ & \text { SG4 } \end{aligned}$	$\begin{aligned} & \text { bba } \\ & \text { SG4 } \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} \hline a \\ 3 \mathrm{~V} \end{gathered}$	b
Crosstalk between channels4 (100 MHz)	C.T.C4	-	-30	-25	dB	31 28 25	b			b	b	$\begin{aligned} & \hline \text { abb } \\ & \text { SG4 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG4 } \end{aligned}$	$\begin{aligned} & \text { bba } \\ & \text { SG4 } \end{aligned}$	b	b	b	$\begin{gathered} \hline a \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$
Pulse characteristic 1	Tr1	-	1.6	2.5	ns	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{abb} \\ & \text { SG6 } \end{aligned}$	$\begin{aligned} & \text { bab } \\ & \text { SG6 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG6 } \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	b
	Tf1	-	1.6	2.5		31 28 25	$\begin{aligned} & \mathrm{abb} \\ & \mathrm{SG} 6 \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG6 } \end{aligned}$	$\begin{aligned} & \hline \text { bba } \\ & \text { SG6 } \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	b
Pulse characteristic2	Tr2	$-$	1.6	2.5	ns	31 28 25	b	b	b	b	b	$\begin{aligned} & \hline \text { abb } \\ & \text { SG6 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG6 } \end{aligned}$	bba SG6	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$
	Tf2	-	1.6	2.5	ns	$\begin{aligned} & 31 \\ & 28 \\ & 25 \end{aligned}$	b	b	b	b	b	$\begin{aligned} & \hline \text { abb } \\ & \text { SG6 } \end{aligned}$	$\begin{aligned} & \hline \text { bab } \\ & \text { SG6 } \end{aligned}$	bba SG6	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$

Electrical Characteristics (cont.)

Item	Symbol	Limits			Unit	Test Point (s)	Input											SW	
		Min.	Typ.	Max.			$\begin{aligned} & \text { SW2 } \\ & \text { Rin1 } \end{aligned}$	SW4 Gin1	SW6 Bin1	SW7 Hin1	SW8 Vin1	SW10 Rin2	$\begin{gathered} \text { SW12 } \\ \text { Gin2 } \\ \hline \end{gathered}$	SW14 Bin2	SW15 Hin2	SW16 Vin2	$\begin{aligned} & \hline \text { SW22 } \\ & \text { Sync } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SW11 } \\ \text { P.sav } \\ \hline \end{array}$	SW13 Switch
HV SW																			
High level output voltage1	Vdch1	3.8	4.2	-	V	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	$\begin{gathered} \mathrm{a} \\ \mathrm{SG8} \end{gathered}$	$\begin{gathered} a \\ \text { SG8 } \end{gathered}$	b	b	b	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	b
High level output voltage2	Vdch2	3.8	4.2	-	V	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ \mathrm{SG} 8 \end{gathered}$	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	b	$\begin{gathered} a \\ 3 V \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$
Low level output voltage1	Vdcl1	-	0.2	0.5	V	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	$\begin{gathered} \mathrm{a} \\ \mathrm{SG8} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{a} \\ \mathrm{SG8} \\ \hline \end{array}$	b	b	b	b	b	b	$\begin{gathered} a \\ 3 V \end{gathered}$	b
Low level output voltage2	Vdcl2	-	0.2	0.5	V	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	b	b	b	b	b	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	b	$\begin{gathered} a \\ 3 V \end{gathered}$	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$
Input threshold voltage H	VithH	1.8	2.0	2.2	V	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \text { SG8 } \end{gathered}$	b	b	b	b	b	b	$\begin{gathered} a \\ 3 V \end{gathered}$	b
Input threshold voltage L	VithL	1.0	1.4	1.6	V	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{gathered} \hline \mathrm{a} \\ \text { SG8 } \end{gathered}$	b	b	b	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	b
Rising time3	Tr3	-	25	-	ns	$\begin{aligned} & 18 \\ & 19 \\ & \hline \end{aligned}$	b	b	b	$\begin{gathered} \mathrm{a} \\ \text { SG8 } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{a} \\ \text { SG8 } \end{array}$	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	b
Falling time3	Tf3	-	15	-	ns	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	$\begin{gathered} \mathrm{a} \\ \mathrm{SG} 8 \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \text { SG8 } \end{gathered}$	b	b	b	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	b
Rising delay time	HVDr	-	40	60	ns	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \text { SG8 } \end{gathered}$	b	b	b	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	b
Falling delay time	HVDf	-	40	60	ns	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	b	b	b	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{a} \\ \text { SG8 } \end{array}$	b	b	b	b	b	b	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	b
Sync SEP.																			
Sync on G input minimum voltage	SYrv	0.2	-	-	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$	21	b	b	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ \mathrm{SG} 7 \end{gathered}$	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	-
Sync output high level voltage	SYVH	3.8	4.3	-	V	21	b	b	b	b	b	b	b	b	b	b	$\begin{gathered} \mathrm{a} \\ \mathrm{SG} 7 \end{gathered}$	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	-
Sync output low level voltage	SYVL	-	0.2	0.5	V	21	b	b	b	b	b	b	b	b	b	b	$\begin{gathered} \text { a } \\ \text { SG } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ 3 \mathrm{~V} \end{gathered}$	-
Sync output rising time 3	STr	-	25	-	ns	21	b	b	b	b	b	b	b	b	b	b	$\begin{gathered} \text { a } \\ \text { SG7 } \end{gathered}$	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	-
Sync output falling time 3	STf	-	15	-	ns	21	b	b	b	b	b	b	b	b	b	b	a SG7	$\begin{gathered} \hline a \\ 3 \mathrm{~V} \end{gathered}$	-
Sync output rising delay time	SDr	-	40	60	ns	21	b	b	b	b	b	b	b	b	b	b	SG7	$\begin{gathered} a \\ 3 V \end{gathered}$	-
Sync output falling delay time	SDf	-	40	60	ns	21	b	b	b	b	b	b	b	b	b	b	SG7	$\begin{gathered} a \\ 3 \mathrm{~V} \end{gathered}$	-
Channel Select SW, Power Save SW																			
Channel select SW threshold voltage1	Vthch1	2.5		-	V	-	$\begin{gathered} a \\ \text { SG6 } \end{gathered}$	SG6	$\begin{gathered} \mathrm{a} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{gathered} a \\ \text { SG8 } \end{gathered}$	b	b	b	b	b	SG7	$\begin{gathered} \hline a \\ 3 \mathrm{~V} \end{gathered}$	a variable
Channel select SW threshold voltage2	Vthch2	-	-	1.0	V	-	$\begin{gathered} a \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{gathered} \hline \mathrm{a} \\ \text { SG8 } \end{gathered}$	b	b	b	b	b	$\begin{gathered} \text { a } \\ \text { SG7 } \end{gathered}$	$\begin{gathered} a \\ 3 V \end{gathered}$	a variable
Power save SW threshold voltage1	VthPH	2.0	-	-	V	-	$\begin{gathered} \mathrm{a} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \text { SG8 } \end{gathered}$	b	b	b	b	b	$\begin{gathered} \text { a } \\ \text { SG7 } \end{gathered}$		b
Power save SW threshold voltage2	VthPL	-	-	1.0	V	-	$\begin{gathered} \mathrm{a} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \text { a } \\ \text { SG8 } \end{gathered}$	$\begin{gathered} \mathrm{a} \\ \mathrm{SG8} \end{gathered}$	b	b	b	b	b	SG7		b

Electrical Characteristics Test Method (M61323SP)

Circuit Current 1

No signal. Measure the total circuit current as I_{CC} when supplying 3 VDC to pin 11.

Circuit Current 2

No signal. Measure the total circuit current as $\mathrm{I}_{\mathrm{CC}} \mathrm{STBY}$ when pin 11 connected to GND.

Output DC Voltage 1, 2

Set SW13 to GND (or OPEN), measure the DC voltage of TP31 (TP28, TP25) when there is no signal input.
The DC voltage is as vdc1 (vdc2).

Output DC Voltage 3, 4

Measure the DC voltage TP23 same as "Output DC voltage 1, 2". The DC voltage is Vdc3 (Vdc4).

Maximum Allowable Input Level 1, 2

Set SW13 to GND, input SG1 to pin 2 only. Gradually increasing the SG1 amplitude, read the amplitude of the input signal when the output waveform of TP31 is strained. The value is as Vimax1. In the same way, measure Vimax 1 in response to inputs in pin 4 and pin 6 only.

Then set SW13 to OPEN, measure Vimax2 in response to inputs in pin 10, 12 and 14 only.

Voltage Gain 1, 2

1. The conditions is as table.
2. Set SW13 to GND, input SG2 ($0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$) to pin 2 only. Read the output amplitude of TP31. The value is as $\mathrm{V}_{\mathrm{OR}} 1$.
3. Voltage gain $\mathrm{G}_{\mathrm{V}_{1}}$ is

$$
\begin{equation*}
\mathrm{G}_{\mathrm{V} 1}=20 \log \frac{\mathrm{~V}_{\mathrm{OR}} 1\left[\mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right]}{0.7} \tag{dB}
\end{equation*}
$$

4. In the same way, calculate $\mathrm{G}_{\mathrm{V} 1}$ in response to inputs in pin 4 and pin 6 only.
5. Then set SW13 to OPEN, measure $\mathrm{G}_{\mathrm{V} 2}$ in response to inputs in pin 10,12 and 14 only.

Relative Voltage Gain 1, 2

1. Calculate relative voltage gain $\Delta G_{V} 1$ by the following formula.

$$
\Delta G_{v 1}=G_{v 1} R-G_{v 1} G, G_{v 1} G-G_{v 1} B, G_{v 1} B-G_{v 1} R
$$

2. In the same way, calculate $\Delta \mathrm{G}_{\mathrm{V} 2}$

Voltage Gain 3, 4

1. The conditions is as table.
2. Read the output amplitude of TP23.
3. Calculate $\mathrm{G}_{\mathrm{V} 3}, \mathrm{G}_{\mathrm{V} 4}$ same as "Voltage gain 1".

Freq. Characteristic 1, 2/Relative Freq. Characteristic 1, 2

1. The conditions is as table. This measurement shall use active probe.
2. Set SW13 to GND, input SG4 ($0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$) to pin 2 only. Measure TP31 output amplitude as $\mathrm{V}_{\mathrm{OR}} 1$. In the same way, input SG2 ($0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$) to pin 2 only. Measure TP31 output amplitude as $\mathrm{V}_{\mathrm{OR}} 2$.
3. Freq.characteristic $1 \mathrm{~F}_{\mathrm{C} 1}$ is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{C} 1}=20 \log \frac{\mathrm{~V}_{\mathrm{OR}} 2\left[\mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right]}{\mathrm{V}_{\mathrm{OR}} 1\left[\mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right]} \tag{dB}
\end{equation*}
$$

4. In the same way, calculate $\mathrm{F}_{\mathrm{C} 1}$ in response to inputs in pin 4 and pin 6 only.
5. The difference between of each channel Freq.characteristic is as $\Delta \mathrm{F}_{\mathrm{Cl}}$.
6. Then set SW13 to OPEN, measure $\mathrm{F}_{\mathrm{C} 2}$ and $\Delta \mathrm{F}_{\mathrm{C} 2}$ in response to inputs in pin 10, 12 and 14 only.

Freq. Characteristic 3, 4

Measure the $\mathrm{F}_{\mathrm{C} 3}, \mathrm{~F}_{\mathrm{C} 4}$ when SG 5 of input signal. (For reference)

Crosstalk between Two Inputs 1, 2

1. The conditions is as table. This measurement shall use active probe.
2. Set SW13 to GND, input SG3 to pin 2 only. Read the output amplitude of TP31. The value is as $\mathrm{V}_{\mathrm{OR}} 3$.
3. Then set SW13 to OPEN, read the output amplitude of TP31. The value is as $\mathrm{V}_{\mathrm{OR}} 3$ '.
4. Crosstalk between two inputs 1 C.T.I. 1 is

$$
\begin{equation*}
\text { C.T.I. } 1=20 \log \frac{\mathrm{~V}_{\mathrm{OR}} 3^{\prime}\left[\mathrm{V}_{\mathrm{P}-\mathrm{P}}\right]}{\mathrm{V}_{\mathrm{OR}} 3\left[\mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right]} \tag{dB}
\end{equation*}
$$

5. In the same way, calculate C.T.I. 1 in response to inputs in pin 4 and pin 6 only.
6. Then set SW13 to OPEN, input SG2 to pin 10 only. Read the output amplitude of TP31. The value is as $\mathrm{V}_{\mathrm{OR}} 4$.
7. Set SW13 to GND, read the output amplitude of TP31. The value is as $V_{O R} 4^{\prime}$.
8. Crosstalk between two inputs 1 C.T.I. 2 is

$$
\text { C.T.I. } 2=20 \log \frac{\mathrm{~V}_{\mathrm{OR}} 4^{\prime}\left[\mathrm{V}_{\mathrm{P}-\mathrm{P}}\right]}{\mathrm{V}_{\mathrm{OR}} 4\left[\mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right]} \quad(\mathrm{dB})
$$

9. In the same way, calculate C.T.I. 2 in response to inputs in pin 12 and pin 14 only.

Crosstalk between Two Inputs 3, 4

Set SG4 as the input signal, and then the same method as table, measure C.T.I.3, C.T.I.4.

Crosstalk between Channels 1, 2

1. The conditions is as table. This measurement shall use active probe.
2. Set SW 13 to GND, input SG3 $\left(0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right)$ to pin 2 only. Read the output amplitude of TP31. The value is as $\mathrm{V}_{\mathrm{OR}} 5$.
3. Next, measure TP28, TP25 in the same state, and the amplitude is as $\mathrm{V}_{\mathrm{OG}} 5, \mathrm{~V}_{\mathrm{OB}} 5$.
4. Crosstalk between channels1 C.T.C1 is

$$
\text { C.T.C1 }=20 \log \frac{\mathrm{~V}_{\mathrm{OG}} 5 \text { or } \mathrm{V}_{\mathrm{OB}} 5}{\mathrm{~V}_{\mathrm{OR}} 5}
$$

5. In the same way, calculate C.T.C1 in response to inputs in pin 4 and pin 6 only.
6. Then set SW13 to OPEN, input SG3 $\left(0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right)$ to pin 10 only.

Read the output amplitude of TP31. The value is as $\mathrm{V}_{\mathrm{OR}} 6$.
7. Next, measure TP28, TP25 in the same state, and the amplitude is as $V_{O G} 6, V_{O B} 6$.
8. Crosstalk between two inputs 1 C.T.C2 is

$$
\text { C.T.C2 }=20 \log \frac{V_{O G} 6 \text { or } V_{O B} 6}{V_{O R} 6}(\mathrm{~dB})
$$

9. In the same way, calculate C.T.C2 in response to inputs in pin 9 and pin 11 only.

Crosstalk between Channels 3, 4

Set SG4 as the input signal, and then the same method astable, measure C.T.C3, C.T.C4.

Pulse Characteristic 1, 2

1. The conditions is as table (SG5 amplitude $0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$). Set SW13 to GND (or OPEN).
2. Measure rising Tri and falling Tfi for 10% to 90% of the input pulse with active probe.
3. Next, measure rising Tro and falling Tfo for 10% to 90% of the output pulse with active probe.
4. Pulse characteristic Tr1, Tf1 (Tr2, Tf2) is

$$
\begin{array}{ll}
\operatorname{Tr} 1(T r 2)=\sqrt{(T r o)^{2}-(\text { Tri })^{2}} & \text { (ns) } \\
\text { Tf1 (Tf2) }=\sqrt{(\text { Tfo })^{2}-(T f i)^{2}} & \text { (ns) }
\end{array}
$$

<HV-SW>

High Level Output Voltage 1, 2/Low Level Output Voltage 1, 2

1. The conditions is as table. Input SG8 to pin 7 (or pin 8). Set SW13 to GND, read the output high level and low voltage of TP19, TP18. The value is as Vdch1, Vdcl1.
2. Input SG8 to pin 15 (or pin 16). Set SW13 to OPEN, read the output high level and low voltage of TP19, TP18. The value is as Vdch2, Vdcl2.

Input Threshold Voltage $\mathbf{H} /$ Input Threshold Voltage \mathbf{L}

1. Set SW13 to GND (or OPEN). Gradually increasing the voltage of pin 7 (or pin 15) from 0 V , measure the input voltage of pin 7 (or pin 15) when the TP19 voltage turned high level (3.8 V or more). The value is as VithH.
2. Gradually decreasing the voltage of pin 7 (or pin 15) from 3 V , measure the input voltage of pin 7 (or pin 15) when the TP19 voltage turned low level (0.5 V or less). The value is as VithL.
3. In the same way, measure the input voltage of pin 8 (or pin 16) as VithH, VithL.

Rising Time/Falling Time

1. The conditions is as table. This measurement shall use active probe.
2. Measure rising Tri and falling Tfi for 20% to 80% of the output pulse as $\operatorname{Tr} 3, \mathrm{Tf} 3(\mathrm{Tr} 4, \mathrm{Tf} 4)$.

Rising Delay Time/Falling Delay Time

Set SW13 to GND (or OPEN), input SG8 to pin 7 (or pin 15).
Measure the rising delay time HVDr and the falling delay time HVDf.
In the same way, measure HVDr and HVDf when input SG8 to pin 8 (or pin 16)

<Sync-Separation>

Sync Input Minimum Voltage

Gradually decreasing the amplitude of SG7 in pin 22, measure the amplitude of SG7 when the Sync-Sep output signal turn off. The value is as SYrv.

Sync Output High Level Voltage/Sync Output Low Level Voltage

Input SG7 to pin 22, read the output high level and low voltage of TP21. The value is as SYVH, SYVL.

Sync Output Rising Time/Sync Output Falling Time

1. The conditions is as table. (SG7 amplitude $0.3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$)

This measurement shall use active probe.
2. Measure rising Tri and falling Tfi for 10% to 90% of the input pulse as STr, STf.

Sync Output Rising Delay Time/Sync Output Falling Delay Time

Input SG7 to pin 22. Measure the rising delay time SDr and the falling delay time SDf.

<Others>

Channel Select SW Threshold 1, 2

1. Gradually increasing the voltage of pin 13 from 0 V , measure the maximum voltage of pin 13 when the channel 1 is selected. The value is as Vthch1.
2. Gradually decreasing the voltage of pin 13 from 5 V , measure the minimum voltage of pin 13 when the channel 2 is selected. The value is as Vthch2.

Power Save SW Threshold 1, 2

1. Gradually increasing the voltage of pin 11 from 0 V , measure the maximum voltage of pin 11 when the power save mode. The value is as VthPL.
2. Gradually decreasing the voltage of pin 13 from 5 V , measure the minimum voltage of pin 11 when the power save mode. The value is as VthPH.

Input Signal

SG No.	Signals
SG1	Sine wave ($\mathrm{f}=60 \mathrm{kHz}, 0.7 \mathrm{~V}$ P-P (Amplitude variable))
SG2	Sine wave ($f=1 \mathrm{MHz}$, $0.7 \mathrm{~V}_{\text {P-P }}$ (Amplitude variable))
SG3	Sine wave ($\mathrm{f}=10 \mathrm{MHz}, 0.7 \mathrm{~V}_{\text {P-P }}$ (Amplitude variable))
SG4	Sine wave ($\mathrm{f}=100 \mathrm{MHz}, 0.7 \mathrm{~V}_{\text {P-P }}$ (Amplitude variable))
SG5	Sine wave ($\mathrm{f}=250 \mathrm{MHz}, 0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ (Amplitude variable))
SG6	
SG7	Sync (fH = 60 kHz)
SG8	

Typical Characteristics

Test Circuit (M61323SP)

Application Example (M61323SP)

Pin Description (M61323SP)

pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
$\begin{gathered} \hline 1 \\ 3 \\ 5 \\ 20 \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}(\mathrm{R})$ $\mathrm{V}_{\mathrm{CC}}(\mathrm{G})$ V_{CC} (B) V_{CC} (H, V, Sync-Sep.)	5.0	-	-
$\begin{aligned} & \hline 26 \\ & 29 \\ & 32 \\ & \hline \end{aligned}$	V_{CC} (ROUT) V_{Cc} (GOUT) V_{CC} (BOUT)	5.0	-	-
$\begin{gathered} \hline 2 \\ 4 \\ 6 \\ 10 \\ 12 \\ 14 \end{gathered}$	Input1 (R) Input1 (G) Input1 (B) Input2 (R) Input2 (G) Input2 (B)	2.3		Input signal with low impedance
$\begin{gathered} \hline 7 \\ 8 \\ 15 \\ 16 \end{gathered}$	Input1 (H) Input1 (V) Input2 (H) Input2 (V)			Input pulse between 3 V and 5 V
$\begin{gathered} 9 \\ 17 \\ \\ 24 \\ 27 \\ 30 \end{gathered}$	GND (V-SW) GND (H, V, Sync- Sep.) GND (B-out) GND (G-out) GND (R-out)	GND		-

Pin Description (M61323SP) (cont.)

pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
11	PwrSave-SW	2.5		Do not apply more 5 V DC voltage
13	CONT-SW	2.4		Do not apply more 5 V DC voltage
$\begin{aligned} & 18 \\ & 19 \end{aligned}$	Vout Hout			-

Pin Description (M61323SP) (cont.)

pin No.	Name	DC Voltage (V)	Function		
21	Sync sep OUT	-	Peripheral Circuit	-	
22					

Note How to Use This IC (M61323SP)

1. R, G, B input signal is $0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ of standard video signal.
2. H, V input is 5.0 V TTL type.
3. Input signal with sufficient low impedance to input terminal.
4. The terminal of $\mathrm{R}, \mathrm{G}, \mathrm{B}$ output pin are shown as figure 1 .

When resistance is connected between the pin $31(28,25)$ and GND, I_{CC} will be increase.
5. Switch (pin 13) can be changed by supplying some voltage as figure 2 .

0 to 0.5 V : INPUT1
2.5 to 5 V : INPUT2

Do not apply V_{CC} or more DC voltage.
6. Power save mode is provided for saving I_{CC} less than about 10 mA as figure 3.

0 to 0.5 V: Power save mode (H.V-SW, Sync-Sep., G-Buffer)
2.5 to 5 V : Normal mode

Do not apply 5 V or more DC voltage
7. When not use the Sync-separation circuit built in this IC, capacitance of several tens of pF is required between the pin 22 and GND.

Figure 1

Figure 2

Figure 3

Cautions for Manufacturing Boards

Built-in wide band preamplifier may cause oscillation due to the wiring shape on the board.
Be careful for the following points.

- V_{CC} shall use a stable power supply.
(Individual V_{CC} should use an independent power supply.)
- GND should be as wide as possible. Basically, solid earth should be used.

Make the load capacitance of output pins as small as possible.

- Also ground the hold capacitance to stable GND, which is as near to the pin as possible.
- Insertion of a resistance of several tens of ohms between the output pin and the circuit at the next stage makes oscillation harder.
- When inserting an output pull-down resistance, make wire between the output pin and the resistance as short as possible.

Package Dimensions

RenesasTechnology Corp. Sales strategic Planning Div. Nippon Bldg., 2-6-2, Onte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property warranties or representations with respect to the accuracy or completeness of the information contained
rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples
. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
2. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7 . With the exception of products specifed by Retionas as suitable for automione applitations, Renesas products are not designed, or whictured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear quality undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shal have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificicial life support devices or systems
) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas sha shall ind liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as wallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

RENESAS SALES OFFICES

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

